Animal Models

Social Bonding in Prairie Voles Helps Guide Search for Autism Treatments

Source: 
Emory Woodruff Health Sciences Center
Date Published: 
April 28, 2011
Abstract: 

Researchers at the Center for Translational Social Neuroscience (CTSN) at Emory University are focusing on prairie voles as a new model to screen the effectiveness of drugs to treat autism. They are starting with D-cycloserine, a drug Emory researchers have shown enhances behavioral therapy for phobias and also promotes pair bonding among prairie voles. Giving female voles D-cycloserine, which is thought to facilitate learning and memory, can encourage them to bond with a new male more quickly than usual.

Gene Linked to Severity of Autism's Social Dysfunction Identified

Source: 
Science Daily
Date Published: 
April 7, 2011
Abstract: 

With the help of two sets of brothers with autism, Johns Hopkins scientists have identified a gene associated with autism that appears to be linked very specifically to the severity of social interaction deficits. The gene, GRIP1 (glutamate receptor interacting protein 1), is a blueprint for a traffic-directing protein at synapses -- those specialized contact points between brain cells across which chemical signals flow.

MIT Researchers Recreate Autism in Mice

Source: 
Medical News Today
Date Published: 
March 20, 2011
Abstract: 

By mutating a single gene, researchers at MIT and Duke have produced mice with two of the most common traits of autism - compulsive, repetitive behavior and avoidance of social interaction. In this study, the researchers focused on one of the most common of those genes, known as shank3. Shank3 is found in synapses - the junctions between brain cells that allow them to communicate with each other. Feng, who joined MIT and the McGovern Institute last year, began studying shank3 a few years ago because he thought that synaptic proteins might contribute to autism and similar brain disorders, such as obsessive compulsive disorder.

Shank3 Mutant Mice Display Autistic-like Behaviors and Striatal Dysfunction

Source: 
Nature, Peça et al.
Date Published: 
March 2011
Year Published: 
2011

Currently, the neurological basis of autism spectrum disorders (ASDs) is poorly understood. “Shank3 is a postsynaptic protein, whose disruption at the genetic level is thought to be responsible for the development of 22q13 deletion syndrome (Phelan-McDermid syndrome) and other non-syndromic ASDs”. In this study, mice with the Shank3 deletion were seen to exhibit “self-injurious repetitive grooming and deficits in social interaction.” Cellular, electrophysiological, and biochemical analyses revealed defects at striatal synapses and cortico-striatal circuits in Shank3 mutant mice. The study’s findings demonstrate that Shank3 plays a critical role in the development of neuronal connectivity. The study also established a causality between a disruption in the Shank3 gene and the beginning of autistic-like behaviors in mice.

Serotonin Plays Role in Many Autism Cases, Studies Confirm

Source: 
Science Daily
Date Published: 
February 24, 2011
Abstract: 

Georgianna Gould, Ph.D., research assistant professor of physiology in the Graduate School of Biomedical Sciences, is eyeing the role that serotonin plays in autism spectrum disorders. Serotonin is known for giving a sense of well-being and happiness. It is a neurotransmitter, a chemical that acts like a radio tower in the brain conveying signals among cells called neurons. Thirty percent of autism cases may have a serotonin component. In a recent paper in the Journal of Neurochemistry, Dr. Gould and colleagues showed that a medication called buspirone improved the social behaviors of mice. Buspirone is approved by the U.S. Food and Drug Administration for use in adults as an anti-anxiety and antidepressant adjuvant medication.

Researchers Develop Mouse Model To Help Find How A Gene Mutation Leads To Autism

Source: 
Medical News Today
Date Published: 
December 20, 2010
Abstract: 

Researchers from Mount Sinai School of Medicine have found that when one copy of the SHANK3 gene in mice is missing, nerve cells do not effectively communicate and do not show cellular properties associated with normal learning. This discovery may explain how mutations affecting SHANK3 may lead to autism spectrum disorders (ASDs). The research is currently published in Molecular Autism.

Autism Treatment: Researchers Identify Possible Treatment for Impaired Sociability

Source: 
Science Daily
Date Published: 
December 8, 2010
Abstract: 

Eastern Virginia Medical School researchers have identified a potential novel treatment strategy for the social impairment of people with Autism Spectrum Disorders (ASD), an aspect of the condition that has a profound impact on quality of life.

Smoking during Pregnancy affects Myelin Genes in Offspring

Source: 
Science Daily
Date Published: 
November 16, 2010
Abstract: 

Smoking during pregnancy may interfere with brain development. New animal research shows maternal smoking affects genes important in the formation and action of a fatty brain substance called myelin that insulates brain cell connections. The finding may explain why the children of mothers who smoked during pregnancy are more likely to develop attention deficit hyperactivity disorder, depression, autism, drug abuse, and other psychiatric disorders.

Inhibitory Neurons Key to Understanding Neuropsychiatric Disorders

Source: 
Science Daily
Date Published: 
November 11, 2010
Abstract: 

In 1999, Baylor College of Medicine researcher Dr. Huda Zoghbi and her colleagues identified mutations in the gene called MECP2 as the culprit in a devastating neurological disorder called Rett syndrome . In new research in mice published in the current issue of the journal Nature, Zoghbi and her colleagues demonstrate that the loss of the protein MeCP2 in a special group of inhibitory nerve cells in the brain reproduces nearly all Rett syndrome features.

Neurogenetics Research Sheds Light on the Causes of Neurological Disease

Source: 
Science Daily
Date Published: 
October 21, 2010
Abstract: 

The last two decades have seen tremendous progress in understanding the genetic basis of human brain disorders. Research developments in this area have revealed fundamental insights into the genes and molecular pathways that underlie neurological and psychiatric diseases. In a new series of review articles, experts in the field discuss exciting recent advances in neurogenetics research and the potential implications for the treatment of these devastating disorders.