Brain Imaging

Better Way Developed to See Molecules at Work in Living Brain

Source: 
Science Daily
Date Published: 
October 12, 2010
Abstract: 

By creating a better way to see molecules at work in living brain cells, researchers affiliated with MIT's Picower Institute for Learning and Memory and the MIT Department of Chemistry are helping elucidate molecular mechanisms of synapse formation. These studies could also help further understanding of how synapses go awry in developmental diseases such as autism and Fragile X syndrome.

Mental Maturity Scan Tracks Brain Development

Source: 
Eurek Alert
Date Published: 
September 9, 2010
Abstract: 

Researchers utilize a new methodology when looking at brain scanning data that may be able to help track and monitor developmental disorders.

Gene Scan Finds Link Across Array of Childhood Brain Disorder

Source: 
EurekAlert
Date Published: 
August 22, 2010
Abstract: 

Mutations in a single gene can cause several types of developmental brain abnormalities that experts have traditionally considered different disorders. With support from the National Institutes of Health, researchers found those mutations through whole exome sequencing – a new gene scanning technology that cuts the cost and time of searching for rare mutations. Whole exome sequencing can be applied to dozens of other rare genetic disorders where the culprit genes have so far evaded discovery. Such information can help couples assess the risk of passing on genetic disorders to their children. It can also offer insights into disease mechanisms and treatments.

Autism Linked to Multisensory Integration

Source: 
Science Daily
Date Published: 
August 20, 2010
Abstract: 

A new study by researchers at Albert Einstein College of Medicine of Yeshiva University has provided concrete evidence that children with autism spectrum disorders (ASD) process sensory information such as sound, touch and vision differently than typically developing children.

Study: Autism Can Be Diagnosed with 15 Minute Brain Scan

Source: 
Bloomberg
Date Published: 
August 10, 2010
Abstract: 

A 15-minute brain scan identified adults with autism almost as effectively as conventional methods of diagnosis that rely on interviews with patients and their families, U.K. scientists said. The scan detected more than 90 percent of the autistic patients who had been diagnosed using intelligence tests, psychiatric interviews, physical examinations and blood tests, according to a study by King’s College London researchers.

New Analysis Reveals Clearer Picture of Brain's Language Areas

Source: 
Science Daily
Date Published: 
May 23, 2010
Abstract: 

Language is a defining aspect of what makes us human. Although some brain regions are known to be associated with language, neuroscientists have had a surprisingly difficult time using brain imaging technology to understand exactly what these 'language areas' are doing. In a new study published in the Journal of Neurophysiology, MIT neuroscientists report on a new method to analyze brain imaging data -- one that may paint a clearer picture of how our brain produces and understands language.

Brain's Master Switch is Verified

Source: 
Science Daily
Date Published: 
May 9, 2010
Abstract: 

Yeon-Kyun Shin, professor of biochemistry, biophysics and molecular biology at ISU, has shown that the protein called synaptotagmin1 (Syt1) is the sole trigger for the release of neurotransmitters in the brain. Shin believes his discovery may be useful in understanding brain malfunctions such as autism, epilepsy and others.

More Accurate Picture of Autistic Brain

Source: 
HealCanal.com
Date Published: 
April 13, 2010
Abstract: 

A new study, the first of its kind, combines two complementary analytical brain imaging techniques to provide a more comprehensive and accurate picture of the neuroanatomy of the autistic brain.

First Direct Recording Made of Mirror Neurons in Human Brain

Source: 
Science Daily
Date Published: 
April 13, 2010
Abstract: 

Neuroscientists believe this "mirroring" is the mechanism by which we can "read" the minds of others and empathize with them. It's how we "feel" someone's pain, how we discern a grimace from a grin, a smirk from a smile. Problem was, there was no proof that mirror neurons existed -- only suspicion and indirect evidence. Dr. Itzhak Fried, a UCLA professor of neurosurgery and of psychiatry and biobehavioral sciences, Roy Mukamel, a postdoctoral fellow in Fried's lab, and their colleagues have for the first time made a direct recording of mirror neurons in the human brain.

It's suspected that dysfunction of these mirror cells might be involved in disorders such as autism, where the clinical signs can include difficulties with verbal and nonverbal communication, imitation and having empathy for others. So gaining a better understanding of the mirror neuron system might help devise strategies for treatment of this disorder.

Longitude Magnetic Resonance Imaging Study of Cortical Development Through Early Childhood in Autism

Source: 
Journal of Neuroscience, Courchesne et al
Date Published: 
March 2010
Year Published: 
2010

The first longitudinal study of brain growth in toddlers at the time symptoms of autism are becoming clinically apparent using structural MRI scans at multiple time points beginning at 1.5 years up to 5 years of age. They collected 193 scans on 41 toddlers who received a confirmed diagnosis of autistic disorder at approximately 48 months of age and 44 typically developing controls. By 2.5 years of age, both cerebral gray and white matter were significantly enlarged in toddlers with autistic disorder, with the most severe enlargement occurring in frontal, temporal, and cingulate cortices. In the longitudinal analyses, which they accounted for age and gender effect, we found that all regions (cerebral gray, cerebral white, frontal gray, temporal gray, cingulate gray, and parietal gray) except occipital gray developed at an abnormal growth rate in toddlers with autistic disorder that was mainly characterized by a quadratic age effect. Females with autistic disorder displayed a more pronounced abnormal growth profile in more brain regions than males with the disorder. Given that overgrowth clearly begins before 2 years of age, future longitudinal studies would benefit from inclusion of even younger populations as well as further characterization of genetic and other biomarkers to determine the underlying neuropathological processes causing the onset of autistic symptoms.